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Abstract: In [SY04, YS07] and references cited therein, the authors introduced
the concept of employing multiresolution wavelet decomposition of computed
flow data as smoothness monitors (flow sensors) to indicate the amount and
location of built-in numerical dissipation that can be eliminated or further
reduced in shock-capturing schemes. Studies indicated that this approach is
able to limit the use of numerical dissipation with improved accuracy com-
pared with standard shock-capturing methods. The studies in [SY04, YS07]
were limited to low order multiresolution redundant wavelets with low level
supports and low order vanishing moments. The objective of this paper is to
expand the previous investigation to include higher order redundant wavelets
with larger support and higher order vanishing moments for a wider spectrum
of flow type and flow speed applications.

1 Redundant Wavelets

Assume that we are given a grid function uj , j = 1, . . . , J on a grid
xj = (j−1)∆x. The goal is to detect regions where the grid function does not
represent a smooth function on the scale ∆x. In theory the degree of smooth-
ness of a function can be deduced from its wavelet coefficients. Here, the basics
of the redundant wavelet analysis is briefly summarized [D92]. The wavelet
decomposition is more often defined without redundancy, i.e., as an expansion
in basis functions, by localizing the wavelet coefficients at every second grid
point. We then obtain J/2 wavelet coefficients and J/2 scaling function values.
With this approach the regularity estimate at a grid point would depend on
how the point is aligned with the coarsened grids. Furthermore, the regularity
of the wavelet function itself would affect the maximum Lipschitz exponent
(regularity estimate) that can be estimated [D92]. The wavelet decomposition
is called redundant because we have computed 2J values at scale 1, namely
the J wavelet coefficients w1,j and the J scaling functions f1,j . This is more
information than necessary to represent the original J grid function values.
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Basic Wavelet Relations: The wavelet coefficient at xj on scale m for a
function u(x) is defined by

wm,j(u) =
∫

ψm,j(x)u(x) dx

where the wavelet function is

ψm,j(x) =
1

2m
ψ((x − xj)/2m).

It is a scaled and translated version of a mother wavelet function ψ(x). ψ(x) is
localized around x = 0. Associated with the wavelet function is a scaling func-
tion φ(x). Similar to the wavelet coefficients, the associated scaling function
coefficients are,

fm,j(u) =
∫

φm,j(x)u(x) dx,

where φm,j(x) = 1/2mφ((x − xj)/2m). Furthermore φ(x) and ψ(x) are such
that the relations

φ(x) =
∑

n

anφ(2x − n∆x) ψ(x) =
∑

n

bnφ(2x − n∆x) (1)

hold. The sums above are taken over a finite number of terms. Equations (1)
give

wm+1,j = 1
2

∑
n bnfm,j+n2m := D(m)fm,j (2)

fm+1,j = 1
2

∑
n anfm,j+n2m := A(m)fm,j . (3)

Thus, the wavelet and scaling coefficients on scale m + 1 are obtained by
applying difference operators to the scaling coefficients on scale m. In (2) we
denoted the wavelet operator on scale m by D(m) to stress that this operator
is usually a differentiation. The scaling function operator on level m, A(m),
is usually an averaging operator. The given grid xj is at scale m = 0. The
grid function uj is given at this scale. No information is given about uj on
the smaller scales (m < 0). For the analysis of uj , we usually approximate
f0,j = uj . From f0,j, equations (2) and (3) give fm,j and wm,j for all scales
m > 0. We focus below on choices for D(0) and A(0). On the coarser scales
(2) and (3) define D(m) and A(m) for m > 0.

Boundary Modification: For non-periodic boundaries, the difference oper-
ators need to be modified at the boundaries. We first do this at the grid scale
m = 0 and then generalize the boundary modification to the coarser scales.
Let the stencil of D(0) be p + q + 1 points wide,

D(0)uj =
q∑

n=−p

1
2
bnuj+n, j = p + 1, . . . , J − q.
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To define D(0) for all points xj , j = 1, . . . , J , we need boundary operators at
the points j = 1, . . . , p with w the width of the operator,

D(0)uj =
w∑

n=1

βj,nun,

and similarly at the upper boundary. A natural choice is to let βj,n approx-
imate the same quantity as is approximated by D(0)uj for j > p. At the
coarser scales the stencil of D(m) extends between j − 2mp and j + 2mq. We
define the generalization of the boundary operators to coarser scales by

D(m)uj =
w∑

n=1

βl,nu1+r+(n−1)2m , j = 1, . . . , 2mp,

where l = [(j − 1)/2m] + 1 and r = j − 1 mod 2m and where [x] is the integer
part of x obtained by truncating the decimals. The boundary modification of
D(m) at the upper boundary and the boundary modifications for A(m) are
defined similarly.

Vanishing Moments: A wavelet function has k vanishing moments if
∫

xnψ(x) dx = 0, n = 0, 1, 2, . . . , k − 1.

The wavelet theory says, see, e.g., [D92, MH92], that a redundant wavelet
with k vanishing moments can be used to estimate the number of derivatives
of a function, up to the kth derivative, because then the wavelet coefficients
wm,j will depend on the scale as 2mα, where α < k is the Lipschitz exponent
of uj near xj . The test cases below illustrate the B-spline and the redundant
form of Harten multiresolution wavelets.

B-spline Wavelets: The Nth degree B-spline wavelet with k vanishing mo-
ments have a scaling function whose Fourier transform is

φ̂(ω) =
(

sinω/2
ω/2

)N

(4)

and wavelet function with Fourier transform is

ψ̂(ω) = (iω)k

(
sinω/4
ω/4

)N+k

. (5)

We assume that N and k are even numbers. Fourier transformation of (1),
use of (4) and (5), and comparison with (2) lead to the difference operators

D(0) = (∆+∆−)k/2 A(0) = (A+A−)N/2,

where the forward and backward undivided difference operators are
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∆−uj = uj − uj−1 ∆+uj = uj+1 − uj,

and the forward and backward averaging operators are

A−uj = (uj + uj−1)/2 A+uj = (uj+1 + uj)/2.

The first operators are

A(0)uj = uj (N = 0)
A(0)uj = (uj+1 + 2uj + uj−1)/4 (N = 2)
A(0)uj = (uj+2 + 4uj+1 + 6uj + 4uj−1 + uj−2)/16 (N = 4)

and

D(0)uj = uj+1 − 2uj + uj−1 (k = 2)
D(0)uj = uj+2 − 4uj+1 + 6uj − 4uj−1 + uj−2 (k = 4).

The wavelet operators are approximations of the kth derivative, e.g.,

uj+2 − 4uj+1 + 6uj − 4uj−1 + uj−2 ≈ ∆x4uxxxx(xj).

The averaging operators A(0)uj are all second order accurate approximations
of the point value uj.

The operators for odd k or N are analogous. The wavelet operators are
approximations of odd order derivatives centered at half points. For example,
the operators with k = 3 are

A(0)uj+1/2 = (uj+2 + 3uj+1 + 3uj + uj−1)/8
D(0)uj+1/2 = (uj+2 − 3uj+1 + 3uj − uj−1).

Redundant Form of Harten Multiresolution Wavelets [SY04]: The
idea is to use a kth order accurate average operator

A(0)uj = u(xj) + O(∆xk)

which does not make use of the value uj. The wavelet operator is defined as

D(0)uj = uj − A(0)uj

so that the wavelet coefficient at xj is the difference between an interpolated
value and the actual value. If this difference is small, we expect the function
to be well-behaved. The first operators are

A(0)uj = (uj+1 + uj−1)/2 (k = 2)
A(0)uj = (−uj+2 + 4uj+1 + 4uj−1 − uj−2)/6 (k = 4)

with corresponding wavelet operators,
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D(0)uj = −(uj+1 − 2uj + uj−1)/2 (k = 2)
D(0)uj = (uj+2 − 4uj+1 + 6uj − 4uj−1 + uj−2)/6 (k = 4).

In general, the wavelet operator is the same as for the B-spline case, but
normalized differently. The multiresolution wavelet allows the grid function
to be decomposed,

uj = A(0)uj + D(0)uj = A(1)A(0)uj + D(1)A(0)uj + D(0)uj = . . .

etc. into any number of scales.

Regularity Estimate: The grid size at scale m is 2m∆x. This implies that
(∆−∆+)k/2uj will depend on the scale as (2m∆x)k = 2mk∆xk if uj is sampled
from a k times differentiable function. According to the theory, [D92, MH92],
the local regularity should be measured over the domain of dependence of the
point xj . We define

dm,j = max{|wm,n| |n : j in stencil for wm,n}.

If dm,j depend on the scale as 2αm, then α is the local Lipschitz exponent at
xj of the analyzed function. We use a least squares fit to the model log2 dm,j =
αm + c to estimate the slope α. With two, three, and four scales this gives
the estimates

α ≈ log2(d1,j/d0,j),

α ≈ 1
2

log2(d2,j/d0,j),

and
α ≈ (3 log2(d3,j/d0,j) + log2(d2,j/d1,j))/10

respectively. It is also necessary to avoid division by zero and/or taking the
logarithm of zeros. Therefore, if |wm,j | < 2mkε, we set wm,j to 2mkε for some
given tolerance ε.

2 Test Cases

Due to space limitation, as an illustration, we select for any non-negative even
numbers N and k, the B-spline wavelet operator pair

D(0) = (∆x2D+D−)k/2 A(0) = (A+A−)N/2

and the multiresolution wavelet operator pair

D(0) =
1
d0

(∆x2D+D−)k/2 A(0) = I − D(0),

where d0 is the coefficient in front of uj in (∆x2D+D−)k/2. We will test these
operators for different values of k and N , and for different number of scales.
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Examples using the redundant form of Harten multiresolution wavelets will
be reported in a forthcoming article.

Performance of Smoothness Monitors using B-Splines on a Given
Data: The given data indicates in the top left of Fig. 1 is the density of
a computed solution of a standard 1-D inviscid shock-turbulence interaction
test case in gas dynamics. A Mach 3 shock moves to the right into a sinusodial
entropy wave. The interaction amplifies the entropy waves and creates acoustic
waves behind the shock. Oscillations of higher frequency develop. A few weaker
shocks are located behind the acoustic wave region. The solution (given data)
in Fig. 1a was computed by the 5th-order WENO scheme on a very fine grid. A
good detector should be able to detect the leading shock wave, but classify the
physical oscillations (0.5 < x < 2.2 and x > 2.2) as smooth regions. Samples
of estimated regularity exponents are shown in Figs. 1b–1d with the original
function shown in black. We investigate the influence of the parameters N ,
k, and the number of scales (or levels) used for the B-spline wavelets. In all
experiments shown, ε = 10−3. Figure 1b shows that the estimated α becomes
smaller when the B-spline order N is increased. Note that the oscillatory part
is classified as regular. In figure 1c, we vary the number of levels (or scales)
from two to four. The estimated α becomes lower when the number of levels
increases at the oscillations, but at the jumps the estimated α is higher for
a larger number of levels. Finally, Fig. 1d shows the α estimate for k = 2
and k = 4 with N and the number of levels unchanged. Here α is larger for
k = 4, except at the jump where α is almost unchanged. The influence of the
number of vanishing moments is clearly visible for the oscillations. The trends
in Figs. 1b–1d were the same for all choices of the fixed parameters. At shock
locations, the higher the N, k and L values, the lower the value of α’s (near
zero or negative spikes). At the physical oscillation region, for all of the studied
N, k and L values, the values of α remain positive for the entire region (above
2 in this case). As a second test case to examined how the α behaves at regions
of spurious high frequency oscillations (completely due to the numerics), we
examined the regularity of the data obtained from the pure convection of a 2-
D vortex (inviscid) by the 8th-order central spatial scheme without numerical
dissipation added. In this case the exact solution is smooth and a good scheme
is expected to convect the vortex without distortion for certain reasonable
time lengths. Due to the lack of numerical dissipation and the nonlinearity of
the Euler equations, in this case, spurious high frequency oscillation occurs at
very early stages of time evolution. The oscillation becomes more pronounced
as time progresses and the solution eventually diverges. The data we obtained
is at the early stage of the spurious high frequency oscillation. We examined
the same N, k and L values. It turns out that at the spurious high frequency
oscillation regions, unlike physical oscillations, the αs in this entire region
are negative. Thus, the use of α as a flow sensor is a clear cut indication
on the locations of shocks, physical oscillations and spurious high frequency
oscillations.
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Fig. 1. a) (top left) Test function with jumps and smooth oscillations. b) (top right)
Estimated α when the B-spline order N varies . c) (bottom left) Estimated α when
the number of wavelet levels varies. d) (bottom right) Estimated α when the number
of vanishing moments, k, varies.
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Fig. 2. a) (left) Density by the filter scheme using B-spline wavelet with N = 2, k =
2, L = 2 as a flow sensor. b) (right) Density by the filter scheme using B-spline
wavelet with N = 4, k = 4, L = 2 as a flow sensor.
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High Order Filter schemes with Flow Sensors as Part of the Defini-
tion of the Filter Numerical Dissipation: The term ”smoothness mon-
itor” or ”flow sensor” used here is different from a limiter in the sense that,
in addition to the built-in limiter existing in shock-capturing schemes, we use
a flow sensor as an adaptive procedure to analyze the computed data to in-
dicate the amount and location of built-in numerical dissipation that can be
eliminated or further reduced. For a chosen numerical dissipation term, after
incorporating the flow sensor as part of the definition of the numerical dissi-
pation, a less dissipative numerical dissipation model emerges. The improved
numerical dissipation model can be used as the replacement of the existing
numerical dissipation term. Alternatively, the improved dissipation model can
be used to construct a new scheme. An efficient approach is to apply the im-
proved numerical dissipation model as a filter step in conjunction with high
order non-dissipative central (compact or non-compact) spatial base schemes.
Figure 2 shows the solution of the same 1-D shock-turbulence problem com-
puted by the filter scheme with the 8th-oder central spatial base scheme and
the dissipative portion of a 2nd-order TVD scheme as part of the filter with
N = 2, k = 2, L = 2 and N = 4, k = 4, L = 2 as B-spline wavelet flow sensors.
The limiter is the van Albada limiter for the nonlinear field and super B lim-
iter for the linear field. The slight oscillation around the weak shock regions
is typical of the super B limiter effect. The results indicate that higher order
N and k values provide higher accuracy solution in the physical oscillation
region with similar accuracy around the shock regions. With this adaptive
numerical dissipation control of our filter scheme, the accuracy is comparable
to a 7th-order WENO scheme using the same grid, and yet requires more than
double the CPU time.
Concluding Remarks: The above test cases indicate that the use of mul-
tiresolution redundant wavelet decomposition of computed data is a good
smoothness monitor with distinct characteristics of Lipschitz exponent for
shocks, physical oscillation and spurious high frequency oscillation (due to
the numerics). The smoothness monitors are useful as data analysis and as
part of an improved numerical dissipation model or filter scheme. More de-
tail studies, including 3-D Navier-Stokes computations will be reported in a
forthcoming article.
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